

Lindomar Jacinto de Souza

Adequação das Ações de Controle de Tensão em Sistemas Elétricos Objetivando o Reforço das Condições de Segurança de Tensão

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Ricardo B. Prada

Rio de Janeiro, março de 2007

Lindomar Jacinto de Souza

Adequação das Ações de Controle de Tensão em Sistemas Elétricos Objetivando o Reforço das Condições de Segurança de Tensão

Tese de Doutorado apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Dr. Ricardo B. Prada Orientador Departamento de Engenharia Elétrica – PUC-Rio

> > Dr. João Passos Filho CEPEL

> > > Dr. Glauco Taranto COPPE / UFRJ

Dr. José Eduardo Onoda Pessanha UFMA

> Dr. Jorgeson O. R. dos Santos UFSJ

> > Dr. Carlos A. Castro UNICAMP

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 30 de março de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Lindomar Jacinto de Souza

Graduado em Engenharia Elétrica pela Universidade Federal do Maranhão (UFMA), em 1995. Mestre em Engenharia Elétrica pela UFMA em 1997. É professor Adjunto do Departamento de Eletroeletrônica do Centro Federal de Educação Tecnológica do Maranhão (CEFET-MA), desde 1998.

Ficha Catalográfica

Souza, Lindomar Jacinto de

Adequação das ações de controle de tensão em sistemas elétricos objetivando o reforço das condições de segurança de tensão / Lindomar Jacinto de Souza; orientador: Ricardo B. Prada. – Rio de Janeiro: PUC-Rio, Departamento de Engenharia Elétrica, 2007.

203 f. : il.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

1. Engenharia elétrica – Teses. 2. Controle de tensão. 3. Estabilidade de tensão. 4. Segurança de tensão. 5. Colapso de tensão. 6. Análise de autovalores. I. Prada, Ricardo B. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

PUC-Rio - Certificação Digital Nº 0220894/CA

A Deus, meus pais, Ângelo e Dalva, e irmãos, Delcimar, Ângela e Lucimar, pelo apoio e confiança.

Agradecimentos

Ao Professor Ricardo Prada, pela dedicação e orientação segura, imprescindível para o desenvolvimento deste trabalho, e pelo apoio prestado durante todo doutoramento.

À FAPEMA pelo suporte financeiro concedido.

Ao CEPEL pela licença de uso dos programas computacionais ANAREDE e FLUPOT.

À PUC-Rio pela concessão de bolsa de isenção de pagamento de mensalidades, sem a qual não poderia fazer o doutoramento, e aos funcionários do seu Departamento de Engenharia Elétrica, por toda atenção prestada.

A Karla Keissan, que esteve do meu lado torcendo pelo meu sucesso.

Aos professores que participaram da comissão examinadora.

Aos professores Osvaldo Saavedra, Maria da Guia, e tantos outros do Departamento de Engenharia Elétrica da UFMA, pelo incentivo prestado desde o princípio de minha vida acadêmica.

A todos os parceiros do curso de Pós-Graduação em Engenharia Elétrica da PUC-Rio pelo estímulo e ajuda no decorrer do curso, em especial ao amigo David Paco.

Por fim, a Deus novamente, por ter me colocado em uma família maravilhosa...

Resumo

Souza, Lindomar Jacinto de; Prada, Ricardo B. Adequação das Ações de Controle de Tensão em Sistemas Elétricos Objetivando o Reforço das Condições de Segurança de Tensão. Rio de Janeiro, 2007. 203p. Tese de Doutorado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O problema de estabilidade de tensão está intimamente ligado à falta de recursos e questões ambientais que limitam a expansão do sistema de transmissão. Esta realidade em conjunto com o crescimento da carga submete os sistemas elétricos a carregamentos pesados, podendo levar a situações de colapso de tensão. O desenvolvimento de métodos para avaliação do carregamento da rede de transmissão tornou-se necessário e imprescindível para que se possa entender o funcionamento do sistema nestas condições e possibilitar a sua operação de modo correto. Em relatório de força-tarefa internacional está explicitada a necessidade de uma ferramenta computacional capaz de verificar a eficácia das ações de controle de tensão na operação do sistema elétrico em tempo-real. Com esse objetivo, foi desenvolvida uma ferramenta computacional com base no sistema linearizado das equações de fluxo de carga, e de todas as outras equações de controles e limites, julgadas pertinentes, para avaliação do efeito das ações de controle de tensão. Determinase uma matriz de sensibilidade [VCS], "voltage control sensitivity matrix", através da qual se pode estabelecer a relação existente entre as tensões controladas e as grandezas controladoras. Os elementos diagonais relacionam a grandeza controladora de cada equipamento com a respectiva tensão controlada. A análise do sinal desses elementos estabelece se uma determinada ação de controle será adequada ou não, isto é, se terá efeito esperado ou oposto. Os elementos fora da diagonal representam a interdependência existente entre os equipamentos controladores de tensão. A matriz de sensibilidade também permite que ações de controle de tensão sejam calculadas com o objetivo de "mover" um ponto de operação inadequado, ou que esteja suscetível à inadequacidade do controle de tensão, colocando-os em um ponto de operação seguro, onde ações operativas de controle de tensão tenham o efeito esperado. Os resultados da avaliação do

método desenvolvido e aplicado a sistemas-teste e reais foram qualitativamente coerentes com aqueles obtidos pela resolução (analítica, iterativa por Newton ou iterativa continuada) das equações de fluxo de carga, validando a proposta. A dimensão da matriz [VCS] é proporcional ao número de barras com tensão controlada em análise. Esta matriz não é esparsa e então, quando utilizada para representar o controle de tensão realizado por um número elevado de equipamentos controladores, sua análise direta pode se tornar complexa. Portanto, uma análise baseada nos autovalores e autovetores associados à matriz [VCS] é aplicada objetivando identificar barras de tensão controlada com efeito reverso, ocorrendo de modo contrário ao esperado, e a existência de controles conflitantes. Buscam-se autovalores negativos, nulos ou próximos de zero. A localização das barras com problemas se dá através do exame dos autovetores e fatores de participação associados a esses autovalores. O cálculo e a análise da matriz de sensibilidade dos controles de tensão são executados de forma extremamente rápida e, portanto, o esforço computacional não impede que a ferramenta desenvolvida possa ser usada durante a operação em tempo-real.

Palavras – chave

Controle de tensão, adequação do controle de tensão, segurança de tensão, colapso de tensão, análise de autovalores.

Abstract

Souza, Lindomar Jacinto de; Prada, Ricardo B. Voltage Control Sensitivity Calculation for Voltage Stability Operational Reinforcement. Rio de Janeiro, 2007. 203p. Doctorate Thesis – Electrical Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro.

The voltage stability problem has been associated with environment questions and lack of financial resources for transmission system expansion. This reality together with the load growth makes the electrical system to be subject of heavy loadings, what can lead to situations of voltage collapse. The development of methods for evaluation of transmission network loading became necessary and indispensable in order to correct operation of the system under heavy loading conditions. In an international force-task report it is stated the need for analytical tools capable of verifying the voltage control action adequacy in the real-time operation. This work reports the development of a computation tool able to evaluate the effect of voltage control actions on the voltage itself. It is based the linearized load flow equations, including control and limit equations judged pertinent. The tool establishes a sensitive matrix, named [VCS] for "voltage control sensitivity matrix", that relates the controlling variables and the controlled voltages. Through the analysis of the sign of each diagonal element, it is possible to know whether a specific control action is adequate or not. Moreover, the off-diagonal elements represent the interdependence among the voltage controller devices of the power system under analysis. The sensitivity matrix also allows the calculation of control actions necessary to "move" the operating point from an unstable area, or near by, to a secure operating region where all voltage control actions would have the expected effect. The results obtained with the "voltage control sensitivity matrix" applied on real and test-systems was qualitatively coherent with those calculated by analytical, iteractive by Newton-Raphson and/or continuationiteractive solution of power flow equations, validating the proposed method. The [VCS] dimension is proportional to the number of buses with controlled voltage in the system area under analysis. The matrix is not sparse and when there are a large number of voltage control equipments, its immediate analysis may be complex. Therefore, an analysis based on eigenvalues and eigenvectors

associated with [VCS] matrix is used in order to identify voltage control action with opposite effect. In this case, the analysis is focused on negative eigenvalues. The identification of conflicting controls existence of any system area under analysis is a by-product. The "voltage control sensitivity matrix" computation and analysis are performed extremely fast. Therefore, the computational effort does not constrain its use in real-time operation.

Keywords

Voltage Control, voltage control sensitivity, voltage security, voltage stability, voltage collapse, eigenvalue analysis.

Sumário

1. Introdução	23
1.1 Considerações Gerais	23
1.2 Relevância do Trabalho	24
1.3 Objetivos do Trabalho	27
1.4 Estrutura do Trabalho	28
2. Avaliação e Reforço das Condições de Estabilidade de Tensão	29
2.1 Avaliação Nodal do Carregamento da Rede de Transmissão	29
2.1.1 Método de Análise	29
2.1.1.1 Magnitude do Determinante da Matriz [D]	31
2.1.1.2 Sinal do Determinante da Matriz [D']	34
2.1.1.3 Interpretação dos Índices	36
2.1.2 Margem de Potência	37
2.1.3 Índice de Influência	38
2.2 Determinação de Ações de Controle	40
2.2.1 Transformação do Sistema Multi-nó	40
2.2.2 Reforço em Barras com Tensão Controlada	43
2.2.2.1 Reforço em Barras de Geração	44
2.2.2.2 Reforço em Barras com Compensação Reativa	44
2.2.3 Aplicação em um Sistema-Teste de 5 Barras	46
2.2.3.1 Aplicação do Programa EstabTen	48
2.2.3.2 Aplicação do Programa CaTrans	48
2.2.3.3 Aplicação do Programa FLUPOT	49
2.3 Conclusões	52
3. Adequação das Ações de Controle de Tensão	53
3.1 Introdução	53
3.2 Representação dos Controles de Tensão e Cálculo dos Índices	53
3.3 Controle de Tensão por Gerador e Compensador Síncrono	54

	3.3.1 Índice Tensão Interna vs. Tensão Terminal	55
	3.3.2 Exemplos Numéricos	57
	3.3.2.1 Índice Tensão Interna <i>v</i> s. Tensão Terminal para Controle Local	57
	3.3.2.2 Índice Tensão Interna <i>vs.</i> Tensão Terminal para Controle Remoto de Tensão	60
3.4	Controle de Tensão por LTCs	61
	3.4.1 Índice Tape vs. Tensão da Barra Controlada	61
	3.4.2 Exemplos Numéricos	63
	3.4.2.1 Índice Tape do LTC <i>vs.</i> Tensão da Barra Controlada Localmente	63
	3.4.2.2 Índice Tape do LTC <i>vs.</i> Tensão da Barra Controlada Remotamente	65
3.5	Controle de Tensão por Capacitor e Reator	66
	3.5.1 Índice Susceptância vs. Tensão Terminal	66
	3.5.2 Exemplos Numéricos	67
	3.5.2.1 Índice Susceptância vs. Tensão Terminal	67
	3.5.2.2 Índice Susceptância vs. Tensão Remota	69
3.6	Controle de Tensão por SVC	71
	3.6.1 Índice Susceptância vs. Tensão Terminal	72
	3.6.2 Índice Ângulo de Disparo vs. Tensão Terminal	73
	3.6.3 Exemplos Numéricos	75
3.7	Conclusões	81
4. Ma	triz de Sensibilidade dos Controles de Tensão	82
4.1	Introdução	82
4.2	Sistema de Equações Linearizadas	82
4.3	Aplicação em Sistemas-Teste e Reais	84
	4.3.1 Introdução	84
	4.3.2 Sistema-Teste de 5 Barras	85
	4.3.3 Interação Entre os Equipamentos Controladores de Tensão	95
	4.3.4 Esforço Computacional para Sistemas de Grande Porte	101
4.4	Análise Modal da Matriz [<i>VCS</i>]	103
	4.4.1 Autovalores	103
	4.4.2 Autovetores	104
4.5	Fator de Participação de Equipamentos Controladores de Tensão	105

4.5.1 Sistema-Teste de 5 Barras	109
4.5.2 Sistema-Teste de 12 Barras	116
4.5.3 Sistema-Teste New England	125
4.5.4 Avaliação do Sistema-Teste SAGE 35 Barras	141
4.5.5 Avaliação do Sistema S-SE Brasileiro	149
4.5.6 Avaliação do Sistema Sul, ONS, Curto Prazo, Dez / 99	157
4.6 Eficiência Computacional	160
4.7 Conclusões	161
5. Obtenção do Ponto de Operação a Partir do Novo Perfil de Tensão	163
5.1 Introdução	163
5.2 Sistema-Teste de 5 Barras	164
5.3 Sistema-Teste de 12 Barras	169
5.4 Sistema-Teste IEEE 24 Barras	170
5.5 Conclusões	182
6. Conclusões, Originalidade e Trabalhos Futuros	183
6.1 Conclusões	183
6.2 Originalidade	184
6.2 Trabalhos Futuros	186
Referencias Bibliográficas	188
Apêndice A	194
Apêndice B	197

Lista de Figuras

Figura 2.1 – Localização dos Vetores Gradientes de P _i e Q _i no Plano V θ	.35
Figura 2.2 – Sinal da Margem na Curva SV	.38
Figura 2.3 – Movimento dos Pontos de Operação na Curva SV	.39
Figura 2.4 – Curva SV para Análise do Índice de Influência	.39
Figura 2.5 – Curvas VQ para a Barra de Grajaú 500 kV	.45
Figura 2.6 – Diagrama Unifilar do Sistema-Teste de 5 Barras	.46
Figura 3.1 – Curvas VQ e VEg	.54
Figura 3.2 – Diagrama Unifilar do Modelo de Regime Permanente do Gerador ou Compensador Síncrono	.55
Figura 3.3 – Diagrama Unifilar de um Sistema com Gerador, Linha de Transmissão e Carga	.57
Figura 3.4 – Tensão ao Longo da Linha Desde a Barra g até a Barra 1	.57
Figura 3.5 – Tensões ao Longo da Rede Antes e Depois da Ação de Controle	.59
Figura 3.6 – Diagrama Unifilar de um LTC do Sistema	.62
Figura 3.7 – Diagrama Unifilar do Sistema com Gerador, LTC, Linha de Transmissão e Carga	.63
Figura 3.8 – Diagrama Unifilar do Sistema de 5 Barras	.67
Figura 3.9 – Diagrama Unifilar do Sistema de 3 Barras	.69
Figura 3.10 – Efeito Esperado da Variação de α sobre V _{cont}	.74
Figura 3.11 – Efeito Oposto ao Esperado da Variação de α sobre V _{cont}	.75
Figura 3.12 – Diagrama Unifilar do Sistema de 5 Barras com SVC	.75
Figura 3.13 – Susceptâncias do FC, TCR e SVC em Função do Ângulo de Disparo dos Tiristores	.77
Figura 4.1 – Diagrama Unifilar do Sistema-Teste de 5 Barras	.85
Figura 4.2 – Diagrama Unifilar do Sistema-Teste de 5 Barras Incluindo o Modelo dos Geradores	.90
Figura 4.3 – <i>Mode-Shape</i> de λ_3 da Matriz de (4.17)1	111
Figura 4.4 – Fator de Participação Calculado para λ_3 da Matriz de (4.17)1	112
Figura 4.5 – Fator de Participação Calculado para λ_3 da Matriz de (4.19)1	113
Figura 4.6 – <i>Mode-Shape</i> de λ_3 da Matriz de (4.19)1	113
<i>Figura</i> 4.7 – Fator de Participação Calculado para λ_5 da Matriz de (4.28)1	114
Figura 4.8 – <i>Mode-Shape</i> de λ_5 da Matriz de (4.28)1	114
Figura 4.9 – Fator de Participação Calculado para λ_5 da Matriz de (4.30)1	115

Figura 4.10 – M	<i>lode-Shape</i> de λ_5 da Matriz de (4.30)11	5
Figura 4.11 – D	iagrama Unifilar do Sistema-Teste de 12 Barras11	6
Figura 4.12 – M	Node-Shape de λ_1 da Matriz de (4.57)11	8
Figura 4.13 – M	Node-Shape de λ_2 da Matriz de (4.57)11	9
Figura 4.14 – M	Node-Shape de λ_3 da Matriz de (4.57)11	9
Figura 4.15 – A Po	utovalores do Sistema-Teste de 12 Barras <i>vs</i> . Aumento ercentual da Carga12	20
Figura 4.16 – Fa	atores de Participação do Autovalor λ_5 da Matriz de (4.58)12	24
Figura 4.17 – <i>M</i>	<i>fode-Shape</i> do Autovalor λ_5 da Matriz de (4.58)12	25
Figura 4.18 – D	iagrama Unifilar do Sistema-Teste New England12	26
Figura 4.19 – Fa	atores de Participação do Autovalor λ_4 = 0,2711 da Matriz VCS] de (4.59)13	30
Figura 4.20 – <i>M</i>	<i>Node-Shape</i> do Autovalor λ_4 = 0,2711 da Matriz [<i>VCS</i>] de (4.59) 13	30
Figura 4.21 – Fa	atores de Participação do Autovalor λ ₁₁ da Matriz [<i>VCS</i>] le (4.60)13	34
Figura 4.22 – <i>M</i>	<i>fode-Shape</i> do Autovalor λ_{11} da Matriz [<i>VCS</i>] de (4.60)13	34
Figura 4.23 – Fa	atores de Participação do Autovalor λ ₁₂ da Matriz [<i>VCS</i>] le (4.60)13	34
Figura 4.24 – <i>M</i>	<i>fode-Shape</i> do Autovalor λ_{12} da Matriz [<i>VCS</i>] de (4.60)13	35
Figura 4.25 – Fa N	atores de Participação do Autovalor λ ₁₄ = 0,2104 da /atriz [<i>VCS</i>] de (4.61)13	39
Figura 4.26 – M d	<i>lode-Shape</i> do Autovalor λ ₁₄ = 0,2104 da Matriz [<i>VCS</i>] le (4.61)13	39
Figura 4.27 – D	viagrama Unifilar do Sistema-Teste SAGE 35 Barras14	2
Figura 4.28 – Fa N	atores de Participação do Autovalor λ ₉ = -0,0154 da /atriz [<i>VCS</i>] de (4.62)14	17
Figura 4.29 – M d	<i>lode-Shape</i> do Autovalor λ ₉ = –0,0154 da Matriz [<i>VCS</i>] le (4.62)14	17
Figura 4.30 – D	iagrama Unifilar Simplificado do Sistema Sul15	58
Figura 5.1 – Dia do	agrama Unifilar do Sistema-Teste de 5 Barras com a Inclusão Modelo de Regime Permanente16	64
Figura 5.2 – Re do	elação Entre a Tensão Interna e a Tensão Terminal Gerador 116	67
Figura 5.3 – Re do	elação Entre a Tensão Interna e a Tensão Terminal Gerador 216	8
Figura 5.4 – Dia	agrama Unifilar do Sistema-Teste IEEE 24 Barras17	'0

Figura 5.5 – Fator de Participação Calculado para o Autovalor λ_8 da Matriz de [<i>VCS</i>] Dada em (5.6)
Figura 5.6 – <i>Mode-Shape</i> do Autovalor λ_8 da Matriz de [<i>VCS</i>] Dada em (5.6)180
Figura 5.7 – Fator de Participação Calculado para o Autovalor λ ₉ da Matriz de [VCS] Dada em (5.6)
Figura 5.8 – Mode-Shape do Autovalor λ_9 da Matriz de [VCS] Dada em (5.6)18 ²

Lista de Tabelas

Tabela 2.1 – Dados de Barra e de Linha do Sistema-Teste de 5 Barras4	46
Tabela 2.2 – Geração e Carga / Caso-Base4	47
Tabela 2.3 – Fluxo de Potência nas Linhas / Caso-Base4	47
Tabela 2.4 – Índices de Avaliação da Estabilidade / Caso-Base4	48
Tabela 2.5 – Caminhos Associados à Barra de Carga / Caso-Base4	19
Tabela 2.6 – Geração e Carga / Caso "Mínima Transferência de Potência" (MTP)	50
Tabela 2.7 – Fluxo nas Linhas / Caso "Mínima Transferência de Potência"5	50
Tabela 2.8 – Índices de Avaliação da Estabilidade / Caso "Mínima Transferência de Potência"5	51
Tabela 2.9 – Caminhos Associados à Barra de Carga / Caso "Mínima Transferência de Potência"5	51
Tabela 3.1 – Ponto de Operação Onde a Barra 0 Está à Direita do Ponto P5	58
Tabela 3.2 – Ponto de Operação Após Decréscimo na Tensão Interna Eg5	59
Tabela 3.3 – Ponto de Operação Onde a Barra 0 Está à Esquerda do Ponto P5	59
Tabela 3.4 – Ponto de Operação Onde a Barra Controlada Está na Região Anormal6	54
Tabela 3.5 – Ponto de Operação Onde a Barra Controlada Está na Região Normal6	54
Tabela 3.6 – Ponto de Operação com a Barra 5 na Região Normal6	38
Tabela 3.7 – Ponto de Operação com a Barra 5 na Região Anormal6	38
Tabela 3.8 – Ponto de Operação na Região Anormal7	70
Tabela 3.9 – Ponto de Operação na Região Normal7	70
Tabela 3.10 – Efeito do Aumento de V _{esp} no Ponto de Operação da Região Normal	78
Tabela 3.11 – Efeito do Aumento de V _{esp} no Ponto de Operação da Região Anormal7	78
Tabela 4.1 – Dados do Sistema-Teste de 5 Barras8	37
Tabela 4.2 – Dados do Sistema-Teste de 5 Barras / Região B8	38
Tabela 4.3 – Equipamentos de Controle de Tensão com Efeito Oposto na Tensão da Barra Controlada i para [VCS] de (4.19)8	39
Tabela 4.4 – Barras de Tensão Controlada Afetadas de Forma Oposta pelo Equipamento de Controle de Tensão j para [<i>VCS</i>] de (4.19)8	39
Tabela 4.5 – Dados do Sistema-Teste de 7 Barras	91
Tabela 4.6 – Dados do Sistema-Teste de 7 Barras / Região B	93

Tabela 4.7 –	Equipamentos de Controle de Tensão com Efeito Oposto na Tensão da Barra Controlada i para [<i>VCS</i>] de (4.30)94
Tabela 4.8 –	Barras de Tensão Controlada Afetadas de Forma Oposta pelo Equipamento de Controle de Tensão j para [<i>VCS</i>] de (4.30)94
Tabela 4.9 –	ΔV Após Aumento de 0,01 pu na Tensão da Barra 296
Tabela 4.10	$-\Delta C$ Após Aumento de 0,01 pu na Tensão da Barra 2
Tabela 4.11	– ΔV Após Redução de 0,01 pu na Barra 297
Tabela 4.12	$-\Delta C$ Após Redução de 0,01 pu na Tensão da Barra 2
Tabela 4.13	$-\Delta V$ Após Aumento de 0,01 pu na Tensão da Barra 2 – Região B98
Tabela 4.14	$-\Delta C$ Após Aumento de 0,01 pu na Barra 2 – Região B
Tabela 4.15	$-\Delta V$ Após Redução de 0,01 pu na Barra 2 – Região B100
Tabela 4.16	$-\Delta C$ Após Redução de 0,01 pu na Barra 2 – Região B100
Tabela 4.17	- Características do Sistema S-SE-CO Brasileiro101
Tabela 4.18	- Resultados da Análise Modal para a Matriz de (4.17)110
Tabela 4.19	- Resultados da Análise Modal para a Matriz de (4.19)112
Tabela 4.20 ·	- Resultados da Análise Modal para a Matriz de (4.28)113
Tabela 4.21	- Resultados da Análise Modal para a Matriz de (4.30)114
Tabela 4.22	– Dados do Sistema-Teste de 12 Barras116
Tabela 4.23	- Resultados da Análise Modal para a Matriz de (4.57)117
Tabela 4.24	 Autovalores do Sistema-Teste de 12 Barras para Diversos Níveis de Carga119
Tabela 4.25	- FPs Após Aumento da Carga do Sistema-Teste de 12 Barras120
Tabela 4.26	– Dados do Sistema-Teste de 12 Barras121
Tabela 4.27	 Relatório da Avaliação das Condições de Estabilidade de Tensão do Sistema-Teste de 12 Barras122
Tabela 4.28	 Equipamentos de Controle de Tensão com Efeito Oposto na Tensão da Barra Controlada i para [VCS] de (4.58)122
Tabela 4.29	 Barras de Tensão Controlada Afetadas de Forma Oposta pelo Equipamento de Controle de Tensão j para [VCS] de (4.58)123
Tabela 4.30 ·	- Resultados da Análise Modal para a Matriz de (4.58)123
Tabela 4.31	 Relatório da Avaliação das Condições de Estabilidade de Tensão do Sistema-Teste New England126
Tabela 4.32 ·	- Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.59).129
Tabela 4.33	 Variação nas Tensões Internas dos Geradores Após Aumento da Tensão da Barra 34 em 0,01 pu131
Tabela 4.34	 Variação nas Tensões Internas dos Geradores Após Redução da Tensão da Barra 39 em 0,01 pu131

Tabela 4.35 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.60).133
Tabela 4.36 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.61).137
Tabela 4.37 – Variação nas Tensões Internas dos Geradores e nos Tapes dos LTCs Após Aumento da Tensão da Barra 2 em 0,008 pu140
Tabela 4.38 – Variação nas Tensões Internas dos Geradores e nos Tapes dos LTCs Após Aumento da Tensão da Barra 12 em 0,017 pu140
Tabela 4.39 – Relatório da Avaliação das Condições de Estabilidade de Tensão do Sistema-Teste SAGE 35 Barras142
Tabela 4.40 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.62).146
Tabela 4.41 – Variação nas Tensões Controladas por Geradores e Reatores Após Aumento da Susceptância da Barra 8 em 0,5 pu148
Tabela 4.42 – Variação nas Tensões Controladas por Geradores e Reatores Após Aumento da Susceptância das Barras 8 e 9 em 1,0 pu149
Tabela 4.43 – Relatório da Avaliação das Condições de Estabilidade de Tensão do S-SE Brasileiro às 18 horas150
Tabela 4.44 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.63).153
Tabela 4.45 – Relatório da Avaliação das Condições de Estabilidade de Tensão do S-SE Brasileiro às 15h154
Tabela 4.46 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.64).155
Tabela 5.1 – Geração e Carga / Caso-Base164
Tabela 5.2 – Geração e Carga / Ponto de Operação Obtido165
Tabela 5.3 – Dados do Sistema-Teste de 12 Barras169
Tabela 5.4 – Relatório de Segurança de Tensão para o Sistema-Teste IEEE-24 Barras no Ponto de Operação Inicial171
Tabela 5.5 – Perfil de Tensão do Sistema-Teste IEEE-24 Barras Antes e Após Reforço174
Tabela 5.6 – Sistema-Teste IEEE 24 Barras / Ajuste em ΔC Passo a Passo175
Tabela 5.7 – Relatório de Segurança de Tensão para o Sistema-Teste IEEE-24 Barras no Ponto de Operação Obtido Após Mudança no Perfil de Tensão177
Tabela 5.8 – Autovalores e FPs para a Matriz [VCS] de (5.8)179
Tabela 5.9 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (5.6)179

Lista de Abreviaturas e Siglas

CEPEL	Centro de Pesquisas de Energia Elétrica
CE	Compensador Estático
CS	Compensador Síncrono
CSC	Controlled Series Compensator
FC	Fixed Capacitor
П	Índice de Influência
IEEE	Institute of Electrical and Electronics Engineers
FRJ	Somatório dos fluxos de potência ativa chegando à Área Rio
FP	Fator de Participação
LTC	Load Tap Changing
Μ	Margem de potência
M ₀	Margem de potência no caso-base
M ₁	Margem de potência após o evento em análise
OLTC	On-load tap changing
Р	Potência Ativa
Q	Potência Reativa
SAGE	Sistema Aberto de Gerenciamento de Energia
SPA	Solução Parcial de Autovalores
S-SE	Sul / Sudeste
S-SE-CO	Sul / Sudeste e Centro Oeste
SVC	Static Var Compensator
TRC	Thyristor controlled reactor
VS	Voltage Stability
VSA	Voltage Stability Assessment
WSCC	Western Systems Coordnating Council
θ	Ângulo da Tensão
V	Módulo da Tensão
ΔP	Variação incremental de potência ativa
ΔQ	Variação incremental de potência reativa
$\Delta \theta$	Variação incremental do ângulo da tensão
ΔV	Variação incremental do módulo da tensão
∆Eg	Variação incremental do módulo da tensão interna do gerador

- [J] Matriz Jacobiana
- [A] Submatriz da matriz Jacobiana expandida
- [B] Submatriz da matriz Jacobiana expandida
- [C] Submatriz da matriz Jacobiana expandida
- [D] Submatriz da matriz Jacobiana expandida
- [D] Matriz obtida de uma redução da matriz Jacobiana expandida
- [VCS] Voltage control sensitivity matrix
- $\partial P/\partial \theta$ Derivada parcial da potência ativa em relação ao ângulo da tensão
- ∂P/∂V Derivada parcial da potência ativa em relação ao módulo da tensão
- ∂P/∂t Derivada parcial da potência ativa em relação ao tape de um LTC
- ∂P/∂Eg Derivada parcial da potência ativa em relação ao módulo da tensão interna de um gerador ou compensador síncrono
- $\partial P/\partial b_{sh}$ Derivada parcial da potência ativa em relação a susceptância em derivação
- $\partial P/\partial B_{SVC}\,$ Derivada parcial da potência ativa em relação a admitância em derivação de um SVC
- $\partial P/\partial \alpha$ Derivada parcial da potência ativa em relação ao ângulo de disparo de disparo dos tiristores de um SVC
- $\partial Q/\partial \theta$ Derivada parcial da potência reativa em relação ao módulo da tensão
- $\partial Q/\partial V$ Derivada parcial da potência reativa em relação ao módulo da tensão
- ∂Q/∂t Derivada parcial da potência reativa em relação ao tape de um LTC
- ∂Q/∂Eg Derivada parcial da potência reativa em relação ao módulo da tensão interna de um gerador ou compensador síncrono
- $\partial Q/\partial b_{sh}$ Derivada parcial da potência reativa em relação a susceptância em derivação
- ∂Q/∂B_{SVC} Derivada parcial da potência reativa em relação a admitância em derivação de um SVC
- $\partial Q/\partial \alpha$ Derivada parcial da potência reativa em relação ao ângulo de disparo de disparo dos tiristores de um SVC
- Si Injeção de potência aparente na barra i
- S_m Injeção máxima de potência aparente na barra i
- ∇P Gradiente do fluxo de potência ativa
- ∇Q Gradiente do fluxo de potência reativa
- β Ângulo entre os gradientes dos fluxos de potência ativa e reativa
- Eg Módulo da tensão interna do gerador
- Z Módulo da impedância

- b_{sh} Susceptância em derivação
- α Ângulo da impedância
- λ Autovalor
- φ Autovetor à direita
- ψ Autovetor à esquerda

"Pouco conhecimento faz que as criaturas se sintam orgulhosas. Muito conhecimento, que se sintam humildes. É assim que as espigas sem grãos erguem desdenhosamente a cabeça para o céu, enquanto que as cheias as baixam para a terra, sua mãe."

Leonardo da Vinci